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The e f f ec t  of delay in  the control system input on the s t a b i l i t y  of 

a continuously acting controller which is designed without considering 

the delay is  studied here. 

plant is studied analytically and verified numerically. For t h i s  example 

it is  found tha t  the system becomes unstable for  a delay which is equiva- 

len t  t o  only 16 percent of its natural  period of motion. I t  is also ob- 

served tha t  even a small amount of natural damping in the system can in- 

crease the amount of delay tha t  can be tolerated before the onset of insta-  

b i l i t y .  

an analysis procedure suggested. The maximum principle from optimal control 

theory is applied t o  minimize the time required fo r  the slewing of a general 

The s t a b i l i t y  analysis of a second order 

The delay probl'em is formulated in  the discrete  time domain and 

r ig id  spacecraft. 

axis maneuver. 

l inear izat ion algorithm for  the result ing two point boundary value problem. 

Numerical examples based on the rigidized in-orbi t  model of the SCOLE also 

include the more general re f lec tor  l ine-of-sight slewing maneuvers. 

The slewing motion need not be r e s t r i c t ed  t o  a single 

The minimum slewing time is calculated based on a quasi- 

ii 
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I. INTRODUCTION 

The present grant extends the research effort  ini t ia ted in previous 

Techni- 
* 

grant years (May 1977 - Feb. 1986) and reported in  Refs. 1-12 . 
ques for  controlling both attitude and shape of very large inherently 

flexible proposed future spacecraft systems are being studied. Among 

possible proposed future applications of these large spacecraft systems 

(US) are: 

scale multi-beam antenna systems (e.g. for use in  mobile comrmnications) ; 

orbitally based electronic mail transmissim; and as in-orbit t e s t  models 

designed t o  compare the performance of flexible LSS systems with that pre- 

dicted based on computer simulations and/or scale model Earth-based labora- 

tory experiments. 

Earth observation and resource sensing systems; large 

The present report is divided into two parts. This volume, designated 

as Part I,, contains four chapters. 

sented a t  the Sixth VPI&U/AIAA Symposium m the Dynamics and Control of 

Large Structures which focuses on possible s tab i l i ty  problems in  LSS con- 

t r o l  systems in  the presence of delayed input which has not been taken into 

account in the design of the closed-loop system. 

a hypothetical s ingle  degree of freedom system the effect  of .  time delay is 

considered both analytically and numerically. 

damping in  the system is also analyzed. The control.problem with delayed 

input is also formulated in the discrete t i m e  domain. 

Chapter I1 is based on a paper pre- 

For the special case of 

The effect o f  inherent (natural) 

* 
References cited in  this  report are listed separately a t  the end of each 
chapter. 
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In the following chapter the problem of minimum time attitude slewing 

of a general r igid spacecraft is developed based on Pontryagin's Maximum 

Principle. 

a single axis, and the final attitude error can be made a s  small as required. 

The control torques and forces are computed and the m i n h  slewing t i m e  

is determined using the quasilinearization algorithm for  the resulting 

two-point-boundary value problem. 

model of t h e  Spacecraft Control Laboratary Experiment-SCOLE 13-14 include 

both single axis slewing as well as the more general reflector-line-of 

sight slewing maneuvers. 

for presentation at  the AIM 26th Aerospace Sciences Meeting, &no, Nevada, 

Jan. 1988.) 

"he slewing motion need not be restricted to  slewing about 

Numerical examples based on the rigidized 

(A paper based on this chapter has been accepted 

Finally Chapter IV describes the main general conclusions together 

with the future reconunendations. 

tinued during the 1987-88 grant year in accordance with our most recent 

The effort described here is being con- 

proposal. 15 

I t  is  planned that Part I1 of this report w i l l  be based on the Ph.D. 
. dissertation entitled, "Q1 the Dynamics and Control of the Spacecraft 

Control Laboratory Experiment (SCOLE) Class of Offset Flexible Systems ," 
currently being prepared by M r .  Cheick Modibo Diarra. 

focus on the modelling, s tab i l i ty  analysis, and control law development of 

This d o c k n t  w i l l  
1 
I 
I 

I 
I b i l i t y  . 
i 

the SCOLE orbiting configuration, including the effects of the mast flexi- 

/ . -  
.I 
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. 
11. STABILITY ANALYSIS OF LARGE SPACE 

S"RUCllRE CONTROL SYSTEMS WITH DELAYED INPUT 
L 

Iiurge s p c a  systans, dm to *ir inherent f l e x i b i l i ~  
and low mass to area ratio, axe represnted by large dimnsiosldl mathe- 

Far implanentaticn of the caltrol laws far such systems 

t h i s b d e l a y I M t y c a \ l s e ~  ' ' t y i n t b c l o s e d l o a p c m ~ l s y s t e m  

sidazaticn. The stability analysis of a sirrple hamxu.~ * oscillator 

herent daarp?ing an the delay is also analyzed. The ccntrol pmbmwith 

matical mdels. 
a finite anwrit of time is required to evaluate the cm-1 signals: and 

that was previausly designed without taking the input dew into con- 

representing tb equatia~ of a single mode as a fun- of &.lay time 
is analyzed analytically and verified n-wy. The effect of in- 

d e h p d  input iS also fanmrlatedh thediscrete time dcnrain. 

Large flexible space strclcetures have been praposed for possible use 

* :12- DE size and the low mass to area ratio of such 
incamplnications 
energym- 
systam warrant the amsiwatim of the flexibility as the nrain ccntri- 

U Y  
rigid nature of earlier spacecraft systems. For such large flexible sys- 

' oKbitalbasedIMilsystelns,andsolar 

buticln to tbe dynamics arld ccntrol problem as cdlpared to the inheren 

tenrs, both Orientatial and surface shape cmkrol may often be required. 

ale equatians of ltuticn itscribing the shape of any large space 
structure are ei- represented by a few partial 'differentid equaticms 
or a large nm&r of ordinary diffemntial equaticms. AS the partial 
differential equati- are difficult to solve for m t r o l  system design 

-Methods (FEM). ~ t y p i c a l l a r g e s p a e s t r u c t u r e s n a m e l y ~  
Hoop/Colclrm an-3 and the space station fitid opra t ima l  cmfigura- 
tim (ICC14 are bath described using 672 degrees of freedan. Thus t b  
dynamics of a large space structure can be written as5: 

-, th? 3-4. ~ C S  m y  de=% Using Finite 

.. 
M Z + K Z = U ,  '. 

2 - 1  



A.S.S.R. REDDY AND P.M. BAINUM 

z=m m e -  ' tesrepresentingthedegrees 
of freedom 

iIlfllx!na of the external forces in each degree of 
.freedaa = B'U, 

*e 

With the moddl. transfonmtj.cn 

and neglecting ths higher m3des, equation (1) can be written in standard 

state space form as 

A =  system matrix 

The proposed con*ol systems for large space s-s are based 
an state variable feedback of the form: 

u = -Ex (3) 

2 - 2  



STABILITY ANALYSIS WITH DELAYED INPUT . 
and the cont ro l  gain matrix,  F, is desi  ed using techni  ues such as the 
l i n e a r  quadrat ic  regula tor  (LQR) t h e o r y r  pole placement?, and/or l i n e a r  
quadrat ic  Gaussian/loop t r ans fe r  recovery (LQG/LTR) . 

For the case when the-complete state is no t  ava i lab le  f o r  feedback, 
an est imate  of the  state, X, is obtained using an appropriate  es t imator  
from the  measurements of t he  form 

Y = c x  

where 

( 4 )  

Y Rxl measurement vector  

C = hm sensor inf luence matrix 

general ,  i t  is assumed t h a t  the es t imated ' s ta te ,  i, is instanta- 
neously avai lable .  
d i g i t a l  computer and the  number of the s t a t u s  (2n) is of t he  order of 
hundreds f o r  a l a r g e  space s t ruc tu re ,  t he  computational t i m e  becomes 
appreciable.  Thus, i n  the  present paper, t he  s t a b i l i t y  of the  closed 
loop con t ro l  system, with the  control as given i n  equation (2) ,  is 
analyzed as a f k c t i o n  of the delay time (h) using the  modified cont ro l  
l a w  of t he  form: 

As the  state estimator is implemented using a 

The c h a r a c t e r i s t i c  equation of the closed loop system 

(6) X I AX(t) -BFX(t-h) 

i s  given by 

5 0  -sh) G(s,h) = d e t  (SI-A+BFe (7) 

which, i n  turn,  can be wr i t t en  as 

i=o 

The roo t s  of the c h a r a c t e r i s t i c  equation, (8) 
h, are obtained from the  corresponding aux i l i a ry  equation9 

as a function of the  delay, 

where 

2-3 
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she value of T for wrhich * rmts of -ti= (gj ~ O S S  
imaginary axis in the s-plane is cbbuled ' and the CorreSpQlding h is 
evalwed-using the relatial, (10). 

III, Example of a Hazmnic ascillator 

equaticn of xrutim representing the ith stmcturd mode is 
tfiefaniliar€larHmu oscillator and is given by 

L xi + w .  x. = f 
1 1  i 

(3zns-g tfie delayed velocity feedback of the form 

Le. 

or 

1 

(s2+36) (lUrs)* +~S(~-TS)~ = 0 

3 s 4  + (2T + 69) s3+(1+36$-~)s2 

+ (72Tt6) st36 = 0 

U s i n g  the R x t h - H u r w i t z  crifxzion, it can be found that the roots of 
equation (15) cross the imaginary axis at  w = 9.7 for T & 0.0426. 
The corresponding delay (h) can be calculated frm the relatim (10) 
with s = j w  and is 0.16. This r e s u l t  can also be verified d i rec t l y  
for this sinple system w i t h  tbe substitution s = j w  into -tion (13) 
resulting in the value of w and delay h for which the roots of the 
chamckristic equation cross the i m g j n a q  axis. 

- 

, 

2-4 



STABILITY ANALYSIS WITH DELAYED INPUT 

Thus, equation (13) can be wri t ten as (keeping ci a n d  0,) : 

/ 

o r  

(w~-w2+2ciwiw sinwh) + j2; iwiw coswh = 0 . 
For equation (17) t o  be s a t i s f i e d  

COB wh = 0 o r  wh = T / 2  

and 2 
2-w +25 w w = 0 wi i i  

or w = siwi 2 wid 1+q 

Taking the  p o s i t i v e  value f o r  w,  the delay h, is given by 

' (18) 

(19) 

The value of h f o r  5 
result is ver i f ied .  iIt is  observed t h a t  au increase i n  damping reduces 
the t o l e r a b l e  delay (h) in the  input. 

= 0.5 and wi = 6 is 0.16 and thus the  earlier 

The equation of motion of a s ingle  mode with inherent  (na tura l )  
damping and ve loc i ty  feedback can be written as: 

where 5;  is the  inherent damping ratio. 

The corresponding c h a r a c t e r i s t i c  equation is given by 

. s 2 +25'w s+w:+2Siwise -sh = 0 .  
i i  

After subs t i t u t ing  s = j w ,  equation (22) cau be wr i t ten  as: 

For equation (23) t o  be s a t i s f i e d  f o r  a l l  w and h, we have 
1 

2ciwi+2ciwi coswh = 0 

o r  * 

i 

2-5 
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. 

Thus, f o r  coswh = < 1, the inherent  damping must be less than damping due 
t o  con t ro l  for i n s t a b i l i t y .  For Si<S;, the  system will always be s tab le .  

With the  value of wh from equation (25) the  frequency w can be 
ca lcu la ted  as: 

w - = w i  c4 & c 1 2  - + J 1+52 -512 ] 
i i  i i  

and se l ec t ing  the  pos i t i ve  value of w, h is given by: 

. .  h =  

For ci = 5' it can be seen t h a t  the delay, h, is ha l f  the  undamped 
natural period of vibrat ion.  
t h e  to l e rab le  delay (h) decreases and is in accordance with the observa- 
t i o n  made in t he  case without t h e  inherent damping. 
ent damping i n  the  system is t o  increase the  amount of delay t h a t  the  
system can t o l e r a t e  without besom unstable as compared t o  the  case 
without damping 

As the damping due t o  cont ro l  increases ,  

The e f f e c t  of inher- 

IV. Discrete Time Domain 

As t h e  con t ro l l e r  is implemented on a d i g i t a l  computer, i t  may be 
more na tu ra l  t o  consider t he  delayed input problem in the d i s c r e t e  t i m e  
domain. 

The equations of motion as given by equation (2) can be written in 
the d i s c r e t e  time domain as 

X(i+l) - AdX(i)+BdU(i) (28) 

where 

A = d i s c r e t i z a t i o n  time. 

The.delayed input.problem can be considered i n  d i s c r e t e  time i n  one of 
. the two following ways: 

i )  Designing the con t ro l l e r  of the form U = -FX('I) without taking 
i n t o  consideration the delay and then examining the e f f e c t  
of delay on the  s t a b i l i t y  of t h e  closed-loop cont ro l  system. 

The con t ro l  gain matrix F i s  designed such t h a t  the  matrix (b-BdF) 
has the  eigenvalues within the un i t  c i rc le .  
into t he  con t ro l  law as: 

Then the del'ay is introduced 



STABILITY ANALYSIS WITH DELAYED INPUT 

U(i) = - Fx(i-fi) 

The s t a b i l i t y  of equation (30) can be studied; using the augmented system 
given by 

x (i+l) 

X( x(i) i-fi+l) ]I" 
% 

2 (i+l) %ti 

-:I- 0 

x (i-1) 

x x(i) (i-fi) 1 /' 

or 

(ii) Designing the  control  by taking i n t o  account the delay in 
the input.6ru 

Equation (28) can be modified aa : 

X(i+l) AdX(i) + BdU(i-fi) (32) 
% The con t ro l  law of the form U(i) = -FZ(i) can be designed from the  

augmented system: 

or 

2-7  



Thus the  input  U(i-fi) is a function of t he  previous inputs', U(i-g-l), 
U(i-fi-2),..., and the previous states X(i-fi). Though t h i s  design can 
take delay i n t o  consideration, the sequence of the  cont ro l  signals: 
U ( i - k ) ,  U(i-k+l),... must be generated a t  an interval of one s t e p  and, 
thus, t he  o r ig ina l  delay problem is not completely solved. 

conclusions 

The effect of delay in the  input on the  s t a b i l i t y  of the continuous 
the con t ro l l e r  that is designed without taking t h i s  delay i n t o ,  consider- 
ation is presented. 
plant: becomes unstable f o r  a delay of 0.16 seconds, which is only 16 per- 
cent of its n a t u r a l  period of motion. It is a l s o  observed t h a t  even a 
small amount of inherent  (natural)  damping in the system can increase the 
amount of delay that can be to le ra ted  without the system becoming unsta- 
ble.  The delay problem is formulated in the  d i sc re t e  t i m e  domain and an 
analys is  procedure is suggested. 

The closed-loop control  system of a second order  

Acknowledge 

This research was supported by NASA G r a n t  NSG-1414. . .  

References 

1. Outlook for Space, NASA Report - 386, Jan. 1976. 
2, Industry Workshop on Large Space Structures,  NASA CR-2709, Contract 

No. NAS-1-12436, f o r  NASA LaRC, May, 1976. 

3. Golden, C.T., Lackey, J.A., and Spea r ,  E.E., "Configuration Develop- 
ment of the  Land Mobile S a t e l l i t e  System (LMSS) Spacecraft," Large 
Space Systems Technology-1981, Third Annual Technical Review, NASA 
LaRC, Nov. 16-19, 1981, NASACP-2215, Par t  2, pp. 711-766. 

4. Housner, 3 . M . ,  "Structural  Dynamic Model and Response of the Deploy- 
ab le  Reference Configuration Space Stat ion,"  NASA TM86386, May 1985. 

5. Bainum, Pe ter  M., e t  a l . ,  "Modelling and Simulation of Dynamics and 
Control of Large Flexible  Orbiting Systems,".gournal of the Ins t i t u -  
t i o n  of Engineers ( India) ,  Vol. 66, P a r t  2 ,  Aerospace Engineering, 
March 1986, pp. 52-56. 

6. Kwakemaalc, H. and Sivan, R,, Linear Optimal Control Systems," Wiley, 
New York, 1972. 

7. Kailath,  T., "Linear Systems," PrenticelHall  Inc., Englewood C l i f f s ,  
N.J., 1980. 

2-8 



STABILITY ANALYSIS W I T H  DELAYED INPUT 

- 
8. Doyle, J.C.,  and S te in ,  G., "Mult ivar iable  Feedback D e s i g n :  Concepts 

for a Cl.assical/Modern Synthesis ,"  IEEE T r a n s  on AC, Vol. AC-26, 
No. 1, Feb. 1981, pp. 4-16. 

I 

9 .  Thowsen, A., "An Analyt ic  S t a b i l i t y  T e s t  . f o r  a class of Time Delay 
Systems," IEEE T r a n s .  on AC, Vol. AC-26, No, 3, June,1981, pp. 735- 
736. 

10. V a n  Woerkm, P.Th.L.M. ; Prisrate. Communication, Feb., 1986. 

11. Reddy, A.S.S.R.,'and Gumustas, A.R., *'Delay D i g i t a l  Control of Large 
Space S t ruc tu res ,  13 th  IASTED I n t e r n a t i o n a l  Conference on Modelling 
and Simulation, June 24-26, 1985, Lugano, Switzerland. 

d 

2-9 



. 

Appendix - Chapter I1 

Stabili ty Analysis of Second Order System 
with Delayed State Feedback 

. 
As a second order differential  equation describes the dynamics of 

a single mode of any large space structure, the s tab i l i ty  analysis of such 

. 

a system with delayed s ta te  feedback is analyzed and the amount of delay 

that can be tolerated by the system without becoming unstable is arrived 

a t  analytically. e 

The differential  equation of second order w i t h  s ta te  feedback can be 

written as: 
2 .. 

xi + 2 < ! ~ - 2  i i i  + wi xi = -Qi(t-h) - kpjlift-h) (1) 
where 

= ith modal coordinate 'i 
w = ith natural frequency i 

G i  

kr = rate feedback gain 

$ = position feedback gain 

h = time delay 

' = ith mode inherent damping ratio 

The feedback gains $, $ are designed f o r  the required s tab i l i ty  and 

transient response specifications without taking the delay into consideration. 

The inherent damping rat io ,  ci I and the feedback gains, kr and $; w i l l  

give rise t o  five possible .combinations as shown in Table 1 and are thus 

analyzed separately for  mathematical convenience and easy understanding. 
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Case I: 5: = 0, kp = 0 and.kr > 0 

The differential  equation of the system can be written as: 
2 .. 

+ wi xi = - k ;.(t-h) xi r i  

1 

k 

I - 0  > o  = o  

I1 > o  > o  = 0  

I11 = o  > o  > o  

nr > o  = o  # O  

v > o  > o  # O  

r P 
Case S i  k 

Note: The remaining three combinations are 
neither feasible nor of interest. 

Table 1: Feasible Combinations of c i ,  k,, kp 
for S t  abi l i ty  Analysis 

and the corresponding characterstic equation is given by: 

where kr - - 2ciui. 

The value of h for which the roots of equation (3) cross the imaginary 

axis can be evaluated by substituting s = j w .  

For equation (4b) t o  be satisfied 
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Thus wh = n/2 
=I2 

and h =  
("i c e i  + J 1+r i2  I 

The characteristic equation of the system described by equatim (1) 

is given by 

(7) 
(mi-" 2 2  +2ciwiwsinwh) + j (2c!w.w+2c.w.wcoswh) = 0 

1 1  1 1  

Thus COSwh = 
1 

(8 1 cos-1 ( 5 i/ 5 i 
3 and h =  

6) [ J +< I2  + J 1+g-<q 
1 1  

For the case where ci<ri thesystem w i l l  always be stable since no value 

of h exists for which the roots of (7) cross the 'imaginary axis. A plot 

of wih versus r i  fo r  various values of c i  is shown in Figure 2.1. 

1 Case 111: s i  = 0, kp = k r  > 0 

The characteristic equation is given by 

s 2 + ~ ? + G s e - s h + v - s h  = 0 
1 

and [(2w?+k2) + ?[<+402k:+4$]] w = z  1 r . .  1 

Plots of hi versus kr/wi for various values of kp/w: are shown in 

Figure 2.2. I t  can be seen here that these are many combinations of kp and 

k r  f o r  which the roots of Eq. (10) can cross the imaginary axis - i .e.  

value of hi which leads t o  instabil i ty.  
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Case IV: s i  > , k r = O , k p # O  

The characteristic equation is given by 

(wiZ-w2+wswh) + j (2s. .w- s h h )  = 0 
I 1 1 %  

sinwh = Thus 

and 2 92 2 2 
w 2  = w i (1-2si ) + wi2Jc(1-2s;z ) + @&) 1 

The plots of hi versus kp/w: for various values of c i  are shown i n  

Figure 2 . 3  

Case V: si ' 0, k r  > 0, kp # 0 

The characteristic equation is given by 

(U i2 -w2%kr s hh+kpCoWh) 

+ j ( 2 s j  wiw+wkrcoswh-k@mh) = 0 

l3y equating the imaginary part t o  zero, wh can be evaluated as 

(14) 

Y 
af ter  substituting wh in the real part of equation ( i s ) ,  

the following equation in the single unknown variable w can be obtained 
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Using equations (17) and (16), the limiting value for given values of ci', 
$, 5 and w i  can be determined. As the equation (17) is nonlinear, ' 

numerical procedures may have to  be used and thus the generalized plots 

similar t o  the other cases may be obtained; 
, 

I 

I 
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5 '  = inherent damping I 

5 '  = 9 .2  0.4 0.6 0.8 1.0 

active damping ra t io  5 

Figure 2.1: Plots of hw- vs ci correspondence t o  Case I1 with c i  
as a paramebr. 
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Figure 2 . 2  Plot of hi vs k r / u i  corresponding t o  Case 111 . kr/Ui 
with kp/u? as a parameter 
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kp/u 2 i 
Figure 2 .3 :  P l o t s  of hi vs kp/ui  2 correspondence t o  Case I V  with 

I;; as a parameter 
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111. MINIMUM TIME A'ITITUDE SLEWING 
MANEWER OF A RIGID SPACECRAFT 

1. Introduction 

The problems of large-angle attitude maneuvers of a spacecraft 

have gained much consideration in recent years [I-*, 11] , In these 

papers, the configurations of the spacecraft considered are: (1) com- 

pletely rigid, (2) a combination of rigid and flexible parts, or (3) 

gyrostat-type systems. The performance indices usually include minimum 

torque integration, power criterion, and frequency-shaped cost func- 

tionals, etc. Also some of these papers used feedback controltech- 

niques. In this paper, we try to concentrate on the minimum time slew- 

ing problem of a rigid spacecraft. 

In Ref. 121, the author studied the rapid torque-limited slewing 

of SCOLE about a single axis (x-axis) about which the spacecraft has 

a small moment of inertia. The control torque about this axis is of a 

bang-bang type or a bang-pause-bang type. The author computed the 

slewing motion on the simplified model of the rigidized SCOLE 111, 

then worked on the practical rigidized model (with nonzero products 

of inertia); hence, this leads to a large error of the attitude 

after the slewing, Also it seems that no details were given for the 

controls about the other two axes (y, z). 

In the present paper, we apply optimal control theory (Maximum 

Principle) to the slewing motion of a genera.1 rigid spacecraft (in- 

clude the rigidized SCOLE, without simplification). The slewing 

motion need not be restricted to a single-axis slewing. The attitude 

error at the end of the slewing can be made as small as required. 

All the controls (torques and forces) are computed and the minimum 

slewing time is found by using the quasilinearization algorithm for 

the resulting two-point-boundary-value problem. 
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2. Attitude Description and State Equations 

2.1 Attitude Description and Euler Rotation 

Let g = [SI a2 S3lT reprensent a set of unit, orthogonal vectors 

of an inertial reference system, and 'I; = [GI 52 g31T a set of unit, 
orthogonal vectors of a body-fixed coordinate system of a spacecraft. 

Then, the attitude of the spacecraft relative to 

by a direction cosine matrix C with C satisfing the relation 

can be described 

6 = C Z  
and 

where q=[qo q1 92 q3]T is the attitude quaternion vector and subject 

to a constraint equation 

qTq=l (3) 

It can be seen that q can be used not only to represent an atti- 

tude orientation of a spacecraft, but also to describe a rotation of a 

rigid body (spacecraft). For example, when a rigid spacecraft rotates 

about an axis defined by a unit vector 

a and E, the quaternion describing this rotation is 
= [El €2 E3IT fixed in both 

- 

90 = COS 03/21 
( 4 )  

9i - - €i sin (0/2) 
where 8 is the rotation angle. 

i=1,2,3 
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The Euler rotation theorem tellSus that an arbitrary orientation 

of a rigid body can be accomplished by rotating it about a certain 

eigenaxis, E=[€., €2 E3lT, through 8 angle from its initial position. 

By means of this theorem we can find the desired rotation quaternion, 

q, between the initial position q(0) and the final orientation q(tf) 

by the relation 
, 

900 910 q20 q30 1 [:%:I 
qOO q30 -q20 

( 5 )  

where the second subscript N o N  and "f" represent the initial time 

and final time, respectively. From here, we can find and 8 

I .  i=1,2,3 
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2.1 Kinematical and Dynamical Equations 

The attitude quaternion and the angular velocity of a rigid 

spacecraft satisfy the following kinematical and Euler dynamical 

equations. 

;I = (1/2) g q 
I & = G I U ) + B u  

- (7) 

where 

- angular velocity vector in the body system, k)=[k)l d 2  &d3 I T  
U - control torque and force vector, u = [Ul U2 U3 ... Un IT 

and 

and B is a 3xn alignment matrix. Eq.(8) can be rewritten, by pre- 

multiplying the inverse of I, as 

& =  I-lW"IL3 + 1-l B u ( 9 )  

The associated initial and terminal boundary conditions of the 

states, q, td, are prescribed: 

q(t-01, (3(t=0); (loa 1 

q(tf)f d(tf) (lob) 
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3.  Optimal Control -- Two Point Boundary Value Problem 

In this paper, we try to minimize the slewing time tf, 

tf = j  tf dt 
0 

(11) 

under the constraints that the elements of the control vector u have 

their upper and lower limits, respectively 

U jmin L uj I ujmax j = 1,2,3, ..., n (12) 

Generally speaking, minimization of tf under the constraints 

(12) will result in a so-called two point boundary value problem in 

which several controls (at least one 1 will reach their bounds during 

the slewing time, tf. To explain this point, let us first consider a 

well-known special case where there are only 3 control torques, Ul, 

U2, U3, about the 3 principal axes of the spacecraft, respectively 

(i.e. diagonal matrix I 1.  For this case the minimum time rotation of 

the spacecraft about one of its principal axes will yield the 

following results: the control torque about this axis is of a 

bang-bang type, while the other two torques remain zero. Otherwise, 

if the slewing motion is not about a principal axis, none of the 3 

controls remain zero, but we can reason that at least one of the 3 

control inputs reaches its bounds, except some jumps at the switching 

points during the period, tf. As for a general case where the control 

torques are about a body axis system which does not coincide with the 

principal axes (non-diagonal I) and some additional control forces, 

U4, ... I un, are available, the control laws become more 

complicated. 
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To handle the problem in which some controls reach their bounds 

and others do not, we introduce an additional cost function 
, 

J = ,1 $ zf uTRu dt 
2 

(13) 

where u is the control vector, R is a proper weighting matrix. From 

Refs. 131 and [81, we can see that, for the case of rest-to-rest 

(i.e. ( ,d(O)=O, ld(tf)=O) slewing with only 3 control inputs involved, 

if we use only (13) as a criterion and tf is long enough, the control 

torques are approximately linear functions of time, and the controls 

will not reach their saturation levels. But if we shorten tf in order 

to find a minimum time, some of the controls must reach their bounds 

and, thus, contribute more effort to the slewing. By continuing the 

shortening of tf, we can get a particular value, t*, during which 

at least'one of the controls remains as bang-bang with one switching 
f 

point, while others are generally not of the bang-bang type. This 

value, ti, is called the minimum time which is required. 

The motivation for using (13) as our cost function are: 

1) Ease of using the quasilinearization algorithm. 

2) No need to determine the switching points. 

3) Easy to guess the unknown initial values of the costates. 

3.1 Necessary Conditions 

The Hamiltonian, H, for the system ( 7 ) , ( 9 )  and (13) is 

H = (1/2)uTRu + pT{ + rTlj 
= (1/2)uTRu + (1/2)pyi& - + rT(1-liZIIL3 + 1-l B u) 

where p and r are costate vectors associated with q and c3, 

p = [PO P1 P2 P3 IT, r = [ rl r2 r3 IT. 
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By means of the maximum principle, the necessary conditions for 

minimizing J, are 

2 = - (dH/dU) -> i = g(O, r) + (1/2)[q1p (16) 

where g(G), r) is a 3x1 vector function of dand r, and the detailed 

form of g(u, r) can be found in Appendix I; [q] is a 3x4 matrix 

q2 1 1 %  -90 -93 

" '=I 93 -q2 -'o 91 -90 -'l J 92 93 

The initial values of p, r are unknown, p(t=O), r(t=O). 

If u is a 3x1 control torque vector and B is a 3x3 nonsingular 

matrix, R can be a positive-definite matrix defined by 

R = B T B  : 

From 

we have 

(17 1 

If u is an nxl (n>3) vector, B is a 3xn matrix, the R formed by 

(17) is a semi-positive-definite matrix. To circumvent the singularity 

of R, we introduce a 3x1 vector, v ,  

v = B u  (20) 
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Then 

(aH/aV) = 0 P ==> v = -1-1 r 

By means of pseudo-inverse of matrix B, B+, we can get u 

u = B+ v = BT(BBT)-~ v 

= -  BT ( BBT ) ( I'lr ) 

The control laws are 

U jmin if Uj < Ujmin; 
u s  -(B+ 1-l r)j, if Ujmin 5 uj 5 Ujmax i /'(23) j 

if U, > Ujmax. 

j=1,2, ..., n. 
Note that Eq. (23) is reduced to Eq. (19) if B'l exists. 

(21) 

(22) 

In summary, we seek the function q(t), W(t), u(t), ~ ( - 1 ,  and r(t) 

which satify the equations (71 ,  ( 9 1 ,  (15-161, (23) subject to the 

boundary contions (10). 

3.2 Properties of the initial values of p 

The key'to settle this problem is to find the unknown initial 

values of the costates 

p(O)=[ Po0 P10 P20 P30 I T  and r(o)=E r10 r ~ o  r301T 

Notice that the coefficient matrix of the right side of Eq.(15) is 

anti-symmetric, so, 

/ 
i.e. pTp = constant - 

/ 

The extra constant is usually treated as an unknown and is determined 

by iteration. This results in more computational effort. However, as 

we shall prove, this unknown constant can be easily selected without 

changes in the optimal controls [8]. 
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Compare Eqs.(7) and (151, they have the same coefficient matrix 

- 
q30 

-92 0 

910 

90 OL 

on the right sides. Therefore, they have the same state transition 

matrix. Let Q represent this 4x4 matrix, then the q and p at any 

instant can be obtained by 

9 = Q q(0) t p = Q p(0) (24) 

We know that Q satisfies the following matrix differential equation 

q10 qOO -‘30 ‘20 1 
q20 q30 qOO -q10 I q30 ‘q20 q10 qOO 

912 
(27) 

6 = (1/2) FQ (25) 

Ref. [lo] shows that Q, the solution of (251, has the form 

(26) 

qll -q12 -913 -914 

‘12 qll q14 -q13 

q13 -q14 qll 912 

914 913 -q12 qll 

Q =  

On substituting Eq.(26) into Eq.(25) we can verify that only 4 of the 

16 qij are independent. We rewrite the first equation of (24) as 

where 900=90(0), 910=91(0), etc. It 

matrix of Eq.(27) is orthogonal, so 

QP1 

912 

q1 3 

‘1 4 

90 0 

-910 

-920 

‘93 0 

910 

90 0 

‘93 0 

920 

is clear that the coefficient 

920 

‘30 

90 0 

-910 

(28) 
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From Eq. (28) we get 

q11 
912 

q1 3 

q14, 

This means that Q is also orthogonal. On the other hand, we have a 

* 
Po0 -p10 4 2 0  “30 

‘10 pOO -’30 ’20 

p20 p30 pOO -p10 

p30 ‘p20 p10 poo, 

similar equation for p, 

PO 

P1 

p2 I p3. a 

rpo - r q O  -91 -92 -93- 

- 91 90 93 -92 

p2 q? -93 90 91 

,p3 93 92 ‘91 90 ~ 

- P1 

(29) 

After substituting Eq.(28) into Eq.(29) and eliminating 911, 912, 

913, 914, one arrives at 

where the constants do, 

-dl -d2 

dl do -d3 

d2 d3 

d3 -d2 dl 

900 910 920 

do -dl 

dl, d2, d3, are given by 

-q10 qOO -q30 q20 

‘q20 q30 ‘00 -qlOI lP201 

(30) 

(31) 

Eq.(30) represents the relationship between the quaternion and the 

(32) 
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Substituting of Eq.(32) into Eq.(16) results in 

r = g(W, r) + 

do ' 
dl 

d2 

d3 .) 

1% -90 -93 

1:: -92 q3 -'o 91 -90 -qiJ 
or 

I: = g(13, r) - 

1 
2 
- 

or 

dl 

d2 

d3 

where d=[dl d2 d3]T, C is just the attitude matrix given by 

It can be seen that r is independent of d o 8  from Eq. (33) , and u 
depends only on r, from Eq.(23). Therefore, u is also independent of 

do.  This means the arbitrary selection of the value of do yields the 
same extremum control, u, Now-we can explain the results in Ref.[ll]. 

In view of Eq.(31), we have 

If we set do=O the norm gf the initial costates in Eq. (34) reaches 

its minimum, the solution of which is considered in Ref. [3]. From 

Eq. (31) we can also know that do=O means 

p ( 0 1 Tq ( 0 1 =o 
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4.  Initial Valuer, of Costates and the Slewing Time 

By means of Euler's eigenaxis rotation theorem, from the known 

attitudes at the initial and final time, q(0) and q(tf), we can find 

a unit vector (eigenaxis), E , which is fixed in both the body axes and 
inertial coordinate system, and a rotation angle, O * .  Then the atti- 

tude changes from q(0) to q(tf) can be realized by rotating the 

spacecraft about the axis, 6 , through the angle, 0* .  

Theoretically, there are many ways through which we can change 

the attitude from its initial value, q(O), to its final value, q(tf). 

For example, this change of attitude can be achieved by successively 

rotating the spacecraft about the XI y, z axes (i.e. 1-2-3 rotations) 

through certain displacements in the angles, 81, 8 2 ,  03, respectively. 

To do this way, we need to speed up (and slow down) the spacecraft 3 

times, and the total rotation angle is, 

for the Euler rotation, we only need to rotate the spacecraft about€ 

once through the angle e* which is less than the total angle required 

by any other way. Since the Euler rotation is simple and requires a 

smaller angle, it may take less time and consume less energy (torques 

and forces). Therefore, in view of our cost functions, (11) and (131, 

it is reasonable to think that the optimal slewing is near the Euler 

rotation. We shall call this rotation the "expected rotation", which 

is determined only from the initial and final attitude of the space- 

craft and will be used in obtaining a set of approximate unknown 

initial values of the costates and the starting solukion of the 

quasilinearization algorithm. 

02+ *3. On the other hand, 

4.1 Initial Values of Costates 

Before starting the quasilinearization algorithm, we need to 
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guess the unknown initial values of the costates, p and r. Considering 

the analytical solution about a single principal axis maneuver in Ref. 

[3], we define a rotation angle e(t) ,  about an arbitrary axis E ,  

1 1 ... 
2 6 

e(t)=e(o)+ 6(o)t + - ij(o)t2 + - e(o)t3 (35) 

1 where e ( O ) ,  6(0), 6 ( O ) ,  s(0) are constants to be determined. 
I 
I For simplicity, here we only consider the solution of 8 with the 

following boundary conditions 

e(o)=o, ~( o ) + o ,  e(tf)=e* b(tf)=O (36) 
~ 

~ 

These conditions correspond to the boundary conditions of the states 

q(O), O(O)CO, q(tf), Gl(tf1-O 

Substituting Eq.(36) into Eq.(35) yields 

2 
8 ( 0 ) =  (60*/tf) - (46(0)/tf) (37a 1 

@. 3 2 
e(o)= -(i2e*/tf) + (66(o)/tf) (37b) 

For the Euler's rotation, the angular velocity and its deriva- 

tives are expressed as follows 
6 b  

c3= e 6 ,  c j=  €6, # =  ( 3 8 )  

To approximately determine the initial values of p and r, we 

need to use the dynamical Eqs.(9) and (33). Upon using Eqs.(20) and 

(21) , substituting v (u) into Eq. (9 1 and solving for r, we get 
rJ 

r = I W I O  - 12cj (39) 

and the derivatives 

r =  -( dt 1 W " I W )  - 12; ( 4 0 )  

At the same time, from Eq.(33), and noting that CT=C'l, 

d = 2 CT g(W, r) - i I (41) 
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At the time t=O, by putting Eqs.(37-38) into Eqs.(39-41), we can get 

the approximate values of r(0) and d. As for p(O) ,  we can set Po(O)=O 

(since do can be arbitrarily chosen) and solve for do and Pi (0) , i-1, 
2,3, by using Eq.(32). 

Now we determine 6 (  0) from known initial value d ( 0  1. Generally, 

W ( 0 )  is not equal to €6 because 6 is independent of w ( 0 ) .  Let e be 

the difference between them 

e =€6(0) - c ~ ( o )  

To find a minimum value of eTe, we differentiate eTe with respect to 

6 ( 0 )  and note that eTE=l , we get 
b ( 0 )  = & T W O )  (42) 

BY using the initial values p ( 0 )  and r(O) obtained above, and 

integrating the differential equations (71, (91, (15-161, with Bu in 

Eq. (9) replaced by v in E q s ,  (20) and (21) , we can get a set of values, 
q(t),O(t), p(t), and r(t), 0 t - < tf, which will be used as the 

starting values of the quasilinearization method. 

4.2 Initial Value of tf 

The starting value tf(O) needs to be'made as close to the minimum 

time, tf*, as possible. This can be done by using the techniques simi- 

lar to those described above. Suppose the slewing motion is an Euler 

rotation about a vector, E ,  through an angle,'e(t). Then, by putting 

the first two equations of Eq.(38) and Eq.(20) into Eq.(8), we get 

I & e " = 6 2 F I € + v  (43) 

For simplicity, we only consider the case Vimin=-v imax. Then, let 

c i a  imax and vi=c.'ti; 1 the above vector equation can be expressed as 

the following 3 similar equations for e(t): 



a *  
ai 8 = bi h2 + Ci T i  i =1,2,3 (44) 

where ai, bit and Ci are constants, t i  is the normalized control 

about the ith body axis and , 

1riI - < 1 i=1,2,3 (45) 

Each equation of Eq.(44) with the boundary condition Eq. (36) can be 

treated as a minimum time control problem with the constraint (45). 

It is easy to see that the control for this problem is of a bang-bang 

type and the problem can be solved analytically to get the minimum 

time t*fi (i=l, 2, 3) as functions of e* and 6 ( 0 ) .  The results are 

shown in Appendix 11. 

I 
I 

Since the only minimum time, tf* , that every equation of Eq. (44 
I 

can accept at the same time is the longest one, we use the largest 

one as our initial guess for tf. 

. ,  

4 . 3 The Quasilinearization Algorithm[ 1 

We choose the quasilinearization algorithm to solve the two 

point boundary value problem because this method needs only to solve 

linear differential equations and it converges quadratically. 

Let z=[qo q1 92 93 w1 w2 w3 PO pi p2 p3 rl r2 r3ITI then Eqs.(7), 

(9) , (15-16 1 can be replaced by . 
2 = f(z,u) (46) 

with the boundary conditions 

Zi(0) = Li i=1,2, - - -  ,8 (47a) 

Zj(tf) = Mj j=1,2, - - .  17 (47b) 

The 8th initial condition is z8(O)=Po(O) (arbitrarily chosen). 

Suppose that at the Nth stage of the iteration, an approximate 

solution reasonably close to the exact solution has been obtained. 
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Then, the linearized form of Eq.(46) at the (N+l)st stage of the 

iteration about the nominal functions, which are the solution obtained 

at the Nth stage of the iteration, is 

Let yl, y2, ..., y6 represent the solutions of Eq.(52) with the 

follawing initial conditions 
I 
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. . . . . 
y6(0)=[~1 L2 - = e  L8 0 0 . .* 0 LIT 

Let.y7 be the solution of Eq.(52) with the initial condition 

y7(O)=[L1 L2 0 . 0  L8 0 0 0 0IT 
I We now have 7 particular solutions of Eq. (52 1 , y1 (t) , y2 (t) , , 
! 
I 

y7(t), 0 < t < tf. The general solution of Eq.(52) can be written as /' - - I 
I a linear combination of these particular solutions 

where B=[B1 B2 * - -  B7IT are constants to be determined and subject to 

B1+B2+=-.+B7=1 (55) 

By letting the components 22, e - -  , 27 satisfy the final conditions 
(53b), we get 

Y12 Y22 - - -  Y72 

Y77 0 . 0  Y17 Y27 

(56) 

[Bl B2 = * *  B6IT=[plo (N+1) p10 (N+1) plO(N+l) rO(N+l)]T 

To summarize the above results, we have a step by step description of 
- 

the quasilinearization algorithm: , 

(a) Obtain nominal function, z(O)(t), and the slewing time t(O)f 

discused in sections 4.1 and 4.2. 

(b) At the (N+l)st stage of the iteration (N=1,2, * = * )  determine 

whether the components of the control vector are on their 
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or 

bounds (have maximum admissible amplitudes) at any point in 

[0, tf(k)] using the conditions in Eq.(23) .Evaluate the 

matrix A and vector D of Eq.(52) in [0, tf(k)]. 

(c) Solve the linear two-point boundary-value problem, Eq.(52), 

using the method of particular solutions. Obtain the func- 

tion ~ ( ~ + 1 )  (t) . Compute the function u(N+l) (t) from Eqs. 
( 4 9 )  and (51). 

(d) Compute 

if I Pio(N+1)1>1 and I rjO(N+')[ >1 . 
1 

(e) If f <  d , a small preselected positive quantity, the optimal 
solution for tf(k) is obtained. Then go to (f 1. Otherwise, 

go to (b) and the iterated solution is used as the nominal 

function for the next stage of the iteration (N=N+l). 

(f) If one of the controls is of a bang-bang type,. stop computa- 

tion, and the tf(k) is the minimum time tf*. If not, shorten 

tf(k) to tf(l-+l) by a reasonable amount and go to (b). 
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5, Numerical Results 

! ! ! 
! I11=1,132,508 I22=7,007,447 I33=7,113,962 ! SLUG ! 
! I ! 
! 52'- 7,555 I23= 115,202 I31= 52,293 ! -FT2 1 
1 1 

Finally, we apply these methods described in the previous sec- 

tions to the SCOLE slewing motion[l]. Fig. 1 shows the configuration 

of the SCOLE. It is composed of a Space Shuttle and a large reflecting 

antenna. The antenna is attached to the Shuttle by a flexible beam. 

Since we only consider the motion of the rigid SCOLE in this paper, 

the flexibility of the beam is ignored. The X, Y, Z axes are the 

spacecraft axes corresponding to roll, pitch and yaw axes, respec- 
/' 

tively. The controls considered in this paper include three moments 

about the X, Y, 2 axes of the system and two forces applied at the 

center of the reflector in the X, Y directions only. The inertia 

parameters of the SCOLE and the saturation levels of the controls are 

listed in Table 1, 

' Table 1. Inertia Parameters and Limits of Controls 

! 

1 
xmax = - U 1 u1 

ymin U = - u  
ymax = 10,000 

I I 

I ! 
- !  I 

! FT-LB ! 
! 

I I 

! LB ! 
1 I 

! .  ! 

The associated alignment matrix B is 

0 

1 0 0 0 

0 1 0 -130 

0 0 1 32.5 18.75 

B =  

--- 3 - 1 9 



We have done some numerical simulations for the following cases: 

(a) A diagonal inertia matrix I is used. The control is assumed 

to be provided only by torques on the Shuttle. No control forces on 

the reflector are assumed. The expected rotation is a rotation about 

one of the three principal axes, through 20 deg., from rest to rest. 

The result is exactly the same as that of the theoretical analysis 

discussed earlier in this paper, i.e., the control torque about the 

slewing axis is of a bang-bang type while the others remain zero. 

(b) Extend the inertia matrix in case (a) to a non-diagonal form. 

The expected rotation is a rotation about one of the three spacecraft 

axes and the rotation angle is 20 deg. 

Fig.2 and Fig.3 give the control torques for the expected rota- 

tions "X- axis slewing" and "Z-axis slewing", respectively. Fig.2 

shows that ux is near of a bang-bang type, while uy, uz are not. The 

non-zero contributions of the uy and uz are due to the offset of the 

inertia distribution of the SCOLE configuration (non-diagonal matrix 

I). Similar situations are shown in Fig.3 where uz is near to a bang- 

bang type and others are not. 

The starting value of t(O)f for these slewings (X- and 2- axes) 

are t(0)f=12.5749 sec. and t(O)f=31.5166 sec. , respectively, by using 
the method in section 4.2. The minimum time., t*f, we actually obtained 

are t*f=12.57 sec. and t*f=31.33 sec. , respectively. These results 
indicate that the estimated values for t*f are very accurate. 

Fig. 4 shows the changes of attitude angles Ox, Oy, 0, ( 1-2-3 

Euler angles) for the "X-axis slewing" of Fig.2. The 0, changes from 

zero to 20 deg., but Oy and 0, change very little during the slewing 

and finally approach zero. The non-zero changes in Oy and 0, are also 

3 -20 



. 
due to the offset of the structural distribution of the SCOLE. 

"z-axis slewing". For the sake of comparison, we use 3 different tf in 

the computation, tf=27.5 sec., tf=26.1 sec. and t*f=20.0 sec. (minimum 

time; recall that t*f=31.33 sec. without fx and fy). From Figs. 9-11, 

the control torques approach the bang-bang type, and the maximum 

3-21  

Fig.5 shows the attitude changes for the "Z-axis slewing" (Fig.3) 

Unlike the case in Fig. 4, the Ox changes greatly. This change is due 

to the unsymmetrical moments of inertia about the X-axis and Y-axis. 

Fig. 6 shows the control torques for the "X-axis slewing" with 

a slewing time tf=15.37 sec., which is 2.8 sec. more than the minimum 

time t*f=12.57 sec.(Fig. 2). The controls are almost linear functions 

of time (rest-to-rest slewing). ux is less than the saturation level, 

and uy, uz are near zero. From Fig.6 and Fig.2, we see that much more 

control effort (approximate 50%) is saved if we increase the slewing 

time a little. Mother feature of using a longer slewing time in the 

computation is that it needs less number (4 times) of iterations for 

convergence than by using a minimum slewing time t*f (12 times) . These 
properties suggest that, in practical applications of this problem, 

it is not necessary to seek the minimum time, t*f, and the associated 

extremum controls. It is enough to know approximate values of the t*f 

and the controls. 

( c )  Following the case (b), we now add two control force actu- 

actors on the reflector, fx and fy. Figs. 7a, 7b and Fig. 8 show the 

control torques, forces and attitude angles for the "X-axis slewing" 

motion. The slewing time t*f is greatly shortened, t*f=3.988 sec. 

(about one third of the slewing time without the forces fx and fy). 

Figs. 9-14 show the controls and attitude angle changes for the 



. 

ampli tude of t h e  c o n t r o l  f o r c e s  inc reases  g radua l ly .  From Fig .  12 t o  

Fig. 1 4 ,  w e  can see t h e  obvious inc reases  i n  8, and ey. This  i s  due 

t o  t h e  i n c r e a s e s  i n  uxr uy, f, and fy .  

( d )  Now w e  cons ide r  a gene ra l  case. Suppose t h e  SCOLE i s  i n  an 

Ear th  o r b i t  and w e  need t h e  l i n e  of s i g h t  t o  be directed toward t h e  

c e n t e r  of t h e  Earth.  The o r b i t a l  coord ina te  system (x, y, z) i s  shown 

i n  t h e  fo l lowing  f i g u r e .  

AT'I'ITUDE OF THE SCOLE 
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Suppose, b e f o r e  t h e  slewing, t h e  Y axis  of t h e  s p a c e c r a f t  coin-  

c i d e s  w i t h  t h e  o rb i t a l  y ax is ,  and t h e  a n g l e  d i f f e r e n c e  between x and 

x (or  z and z ) axes isdr7.897224212 deg. Thus t h e  i n i t i a l  a t t i t u d e  

qua te rn ion  of t h e  s p a c e c r a f t  i s  

q o ( 0 )  = cos (&/2) 

q 2 ( 0 )  = s i n  (&/2) 8 q l ( o ) = q 3 ( 0 ) - 0  

According t o  R e f . [ l ] ,  t h e  u n i t  vector a long  t h e  l i n e  of s i g h t  i n  t h e  

r i g i d  SCOLE coord ina te  system i s  

0.1112447155 1 
A RLOS = 1-0.2410302170 

L 0.9641208678 1 
The d i r e c t i o n  c o s i n e s  of t h e  orbi ta l  z axis  i n  t h e  body system a t  t h e  

i n i t i a l  t i m e  are represented  by 

sin& 
A - 
z’B - co:A I 

h A 
Therefore  t h e  a n g l e  between RLOS and Z/B a t  t h e  i n i t i a l  t i m e  i s  

A A 
eLos(0) = RLOS Z/B =0.9641208678 cos~-O.1112447155 s i n d  

= 20 deg. 

The e igen  ax i s  of t h e  expected r o t a t i o n  i n  t h e  body system i s  d e t e r -  

mined by 

Thus t h e  qua tern ion  f o r  t h i s  r o t a t i o n  i s  

From Eq.(5)  w e  can get t h e  f i n a l  a t t i t u d e  qua tern ion ,  q ( t f ) .  
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Figs .  15a and 15b show t h e  c o n t r o l  to rques  (wi thout  t h e  reflector 

c o n t r o l  f o r c e s )  and a t t i t u d e  ang le s  for  t h i s  slewing motion. 

The guessed s t a r t i n g  va lue  of tf i s  tf(O)=26.3482 sec. and t h e  

a c t u a l l y  converged v a l u e  of tf i s  tf*=25.01 sec. ,The 0~0s i n  Fig.  15b 

i s  t h e  angle between t h e  l i n e  of s i g h t  and t h e  l i n e  of t h e  t a r g e t  

d i r e c t i o n  (from t h e  s p a c e c r a f t  t o  t h e  c e n t e r  of t h e  E a r t h ) .  

Conclusion Remarks 

(1) There i s  a good agreement between t h e  guessed v a l u e  of tf 

and t h e  value of tf t o  which t h e  a lgor i thm converges i n  

t h e  cases ( b )  and (a ) .  
( 2 )  The guessed i n i t i a l  va lues  of t h e  costates here :  p ( O ) ,  r ( 0 )  

are adequate  f o r  t h e  algorithm t o  converge. I f  t h e  s lewing 

t i m e ,  tf ,  i s  s u f f i c i e n t l y  l a r g e r  than  t h e  minimum t i m e ,  

<tf*, then ,  t h e  converged va lues  of p ( 0 )  and r ( O )  are ve ry  

close t o  t h e  guessed values and less number ( 4  t i m e s )  of 

i t e r a t i o n s  is needed (Fig.  6 ) .  The same s i t u a t i o n  w a s  

observed i n  Ref. 8.  

The control p r o f i l e s  obtained i n  t h i s  paper  g i v e  us  a good 

r e f e r e n c e  f o r  f u t u r e  use. For example, an ex tens ion  t o  t h e  

minimum t i m e  slewing motion of t h e  SCOLE model c o n t a i n i n g  

both  r i g i d  and f l e x i b l e  components is planned. 

( 3 )  
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Figure 1. Drawing of the Shuttle/Antennu Conf iguratfon. 
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Fig* 7a CONTROL TORQUES U (X-AXIS SLEZU'IHG) 

Fig. 7b CONTROL FORCES F (X-AXIS SLEWING) 
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Fig. 8 
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Fig. l l b  CONTROL FORCES ( Z-AXIS SLEWING ) 
tn-uID.) 

RlcIxmu u 

u -  

J J -  

i 
4 0 -  

u a0 ta.0 md 
m.r1 

3- 36 



i 
- i  
i 
1 
ii 
I1 
ii 
i i  

P LB a s s m 0 

m 

a 

L. 

0 
W 

9 2  
W 
x 
c( 

c 

.- 
3 : 

3 - 3 7  



L9 z 
H = 
W 
-I cn 
Ln 
H m  
x 4i 

; =? 
0 

4 t E z x m 

3-38 



Fig. 14 ATTITUDE ANRES ( Z-AXIS SLEYING ) 
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Appendix I The term q(b), r )  i n  Eq. (16  

The term I - l Z I  d i n  dynamical equation ( 9 )  can be replaced by 

all a12 a13 ! bll b12 b13 

a21  a22 a23 ! b21  b22 b23 

a31 a32 a33 ! b31 b32 b33 

. 

. 

where t h e  a i j  and b i j  ( t h e  elements  of matrices A and B )  are constants 

associated with t h e  iner t ia  parameters of t he  spacecraf t .  

Then t h e  term rTI-lzIUJ of t h e  Hamiltonian, €3, i n  Eq.(14) has 

where R i  are t h e  l inear  combinations of r j  

The term g ( G ) ,  r )  i n  E q . ( 1 6 )  i s  obtained by 
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. 
Appendix I1 So lu t ion  of E q . ( 4 4 )  

Eq. ( 4 4 )  can be r e w r i t t e n  as 
1. , a i  8 = b i  $2 + C i t i  ( 4 4 )  

For s i m p l i c i t y ,  w e  on ly  consider  t h e  s o l u t i o n s  f o r  t h e  fo l lowing  boun- 

dary  cond i t ions  

e(o)=o,  & o ) = o  (11-1 1 

8 ( tf =e*, &( t f ) =o (11-2 ) 

Suppose ai+O, and l e t  

b = b i / a i  c = c i / a i  

w e  can rewrite E q . ( 4 4 )  as 
a 4  

e = b 6 2  + c t  i 11-3 i 

where w e  a lso suppose 0 0 .  

Since t h e  c o n t r o l  f o r  t h i s  problem i s  of a bang-bang type  wi th  

only  one swi tch ing  p o i n t ,  then,  f o r  T=+l,  
CD 

8 = b b 2 + c  (11-4 ) 

By i n t e g r a t i n g  E q . ( I I - 4 )  and us ing  condi t ion  ( 1 1 - 1 1 ,  w e  can g e t  

6 =,,/(c/b) (e2be - 1) (11-5 ) 

For T =-1, 

& = b & 2 - c  

By i n t e g r a t i n g  E q . ( I I - 6 )  and us ing  condi t ion  (11-21,  

6 = ,,/(c/b) (1 - e2b(8-e*) 1 

(11-6 ) 

(11-7 
e .  

By equat ing  E q s .  (11-5) and (11-71, w e  g e t  8=eS and exes a b  t h e  

swi tch ing  p o i n t ,  t=ts, 

1 2 
2b l+e-2b0* 

e,= - l og  
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(11-8) 

(11-9 ) 



. '  
b 

BY integrating (11-51, we get 

1 - cosh'l(e-bes) , 
#FEE 

1 R 
2 

- [- - sin'l (e'bes)l , b>O 
6 

b<O ; 

( 11-10 ) 

and by integrating Eq.(II-7), we get 

tf = 4 (11-11 1 

1 For the case I 

6(0 ,+0  

more complicated solutions can be obtained, but are not given here. 
I 

I 

I 

I 
I 
I 
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IV. CCNCLUSIONS AND RECCBWNDATIONS 

For large ordered systems, typical of mathematical models of  proposed 

large space structural  systems, a f in i t e  amount of time w i l l  be required t o  

evaluate and process the control signals. 

instabi l i ty  in  the closed loop systems for which the control laws were pre- 

viously designed without considering the effect  of the delay. 

that  such ins tab i l i t i es  may result  even for delays that are only a small 

fraction of the system's fundamental open-loop period. 

These input time delays may cause 

I t  is seen 

From th i s  study it 

is also observed that even a small amount of inherent (natural) damping 

i n  the system can increase the amount of delay that  can be tolerated with- 

out the system becoming mstable. The control problem with delayed input 

is also formulated in  the discrete time domain and an analysis procedure 

is suggested and could provide the bas i s  for future study. 

Pontryagin's maximum principle from optimal control theory has been 

applied t o  formulate slewing control strategies for a general r igid asym- 

metrical spacecraft system. The slewing motion need not be restr ic ted t o  

a single-axis maneuver and the final attitude error  after the s l e w  can be 

made arb i t ra r i ly  small. 

calculated based on a quasi-linearization algorithm for the resulting 

two-point boundary value problem. Euler's eigenaxis rotation theorem 

is used t o  obtain a nominal trajectory of the att i tude slewing motion 

which is used t o  determine the i n i t i a l  (guessed) co-state values f o r  

the algcr'tim. 

model of the SCOLE also include the more general reflector line-of-sight 

slewing maneuvers. 

The control effort  and minimum slewing time are 

Numerical examples based on the rigidized, in-orbit 
-- 
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The guessed i n i t i a l  values for the co-states are'sufficient t o  arrive at  

the (converged) values supplied by the algorithm. The methods used here 

may be implemented for practical control sources which may have more con- 

straints. For example, in the neighborhood of the bang-bang control 

switching points, the jump can be replaced by a linear function of t ime.  

The control prQfiles obtained p v i d e  a reference for future use. An 

I 

1 

extension t o  the minimum time slewing motion of the SCOLE model containing 
I 

I 

1 

both rigid and flexible components is planned. 

I 

i 
i 
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